其中,函数集合 只要取的比 集合 复杂即可,这个很容易达到,我们只需把神经网络设计的复杂一些就行。从最后的式子来看,如果我们能一个在复杂度足够(能够实现比异或更复杂的操作)的函数类中,找到一个函数 ,使得 将来自于 的特征 都判为1,将来自于 的特征 都判为0的概率最大,那么我们就能得到 的上界。其实这边的 就是最开始图中红色的那部分网络 啦!误差界好了,有了度量准则,那么下面就要介绍最重要的一个定理了。Theorem: Let R be a fixed representation function from to , is a binary function class, for every :
定理得证。参考论文:1. Ben-David, Shai, Blitzer, John, Crammer, Koby, and Pereira, Fernando. Analysis of representations for domain adaptation. In NIPS, pp. 137–144, 2006.2. Ben-David, Shai, Blitzer, John, Crammer, Koby, Kulesza, Alex, Pereira, Fernando, and Vaughan, Jennifer Wort-man. A theory of learning from different domains. JMLR, 79, 2010.3. Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Fran¸cois Laviolette, Mario Marchand, Victor Lempitsky. Domain-Adversarial Training of Neural Networks. Journal of Machine Learning Research 17 (2016) 1-354. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. arXiv preprint arXiv:1409.7495 (2014)